コグノスケ


link 未来から過去へ表示(*)  link 過去から未来へ表示

link もっと前
2020年4月6日 >>> 2020年3月28日
link もっと後

2020年3月29日

GCCを調べる - その8-3 - レジスタconstraint判定

目次: GCC

インラインアセンブラで "v" constraintsを指定すると、何も実装していない場合はimpossible constraint in 'asm' と怒られました。レジスタのconstraintsだけ足すとinconsistent operand constraints in an asmと怒られるはずです。エラーをチェックしている箇所は、

inconsistentなんとかエラーを出している場所

static bool
curr_insn_transform (bool check_only_p)
{

...

  if (process_alt_operands (reused_alternative_num))  //★★これが成立してalt_p = trueが期待値だが
    alt_p = true;

...

  if (! alt_p && ! sec_mem_p)
    {
      /* No alternative works with reloads??  */
      if (INSN_CODE (curr_insn) >= 0)
	fatal_insn ("unable to generate reloads for:", curr_insn);
      error_for_asm (curr_insn,
		     "inconsistent operand constraints in an %<asm%>");  //★★ここに到達しエラーが出る
      lra_asm_error_p = true;
      /* Avoid further trouble with this insn.  Don't generate use
	 pattern here as we could use the insn SP offset.  */
      lra_set_insn_deleted (curr_insn);
      return true;
    }

...

このcurr_insn_transform() 関数はやたら長くて(700行)訳のわからない構造です。うまく行く場合(rなどを渡したとき)を観察すると、alt_pがtrueになるのが期待値と思われます。幸いなことにalt_pの設定は一箇所だけ、条件もprocess_alt_operands() 関数だけです。

そう思ってprocess_alt_operands() 関数を見ると、これがまたもの凄い実装で、目を覆いたくなります(1200行!!)。GCC見ていると、クソコードには事欠かないです。これはひどい。

コードの一部を抜粋しても全く意味不明で、そもそもこの関数自体がかなりゴチャゴチャで意味不明です。全て追うのは不可能です。なので"r" がどの辺りを通るかをもって、当たりを付けました。下記のところが分岐点になっているようです。

エラーを判定してそうな場所

static bool
process_alt_operands (int only_alternative)
{

...

	  do
	    {
              //★★pは "=&v" が入っていて、cに先頭から一文字ずつ取って解析している
	      switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
		{
		case '\0':
		  len = 0;
		  break;

...

		default:
		  cn = lookup_constraint (p);  //★★ 'v' に対しては、CONSTRAINT_vが返る
		  switch (get_constraint_type (cn))
		    {
		    case CT_REGISTER:
		      cl = reg_class_for_constraint (cn);  //★★CONSTRAINT_vに対してはVP_REGSが返る
		      if (cl != NO_REGS)
			goto reg;    //★★このジャンプで飛ぶ
		      break;

...

		reg:
		  if (mode == BLKmode)
		    break;
		  this_alternative = reg_class_subunion[this_alternative][cl];
		  this_alternative_set |= reg_class_contents[cl];  //★★どこかでみたreg_class_contentsが登場
		  if (costly_p)
		    {
		      this_costly_alternative
			= reg_class_subunion[this_costly_alternative][cl];
		      this_costly_alternative_set |= reg_class_contents[cl];
		    }
		  winreg = true;
		  if (REG_P (op))
		    {
		      if (hard_regno[nop] >= 0
			  && in_hard_reg_set_p (this_alternative_set,
						mode, hard_regno[nop]))  //★★これが成立しない
			win = true;  //★★少なくともwin = trueにならないと関数が失敗を返す(条件は他にもあるが)
		      else if (hard_regno[nop] < 0
			       && in_class_p (op, this_alternative, NULL))
			win = true;
		    }
		  break;
		}

...

	    }
	  while ((p += len), c);  //★★基本は次の文字に行くが、スキップすることもある模様

どこかでみたアイツです。このエラーはreg_class_contentsを見に行った結末に起きているようです。

試してみたら、色々おかしい

REG_CLASS_CONTENTSを正しく設定すると、下記のコードがコンパイルできるはずです。雰囲気を出すためRISC-Vのベクトル命令を書いていますが、ぶっちゃけコンパイラは命令を全く見ないので、実はabcdでも何でも通ります。コンパイルのみ(*.sを出力)であればアセンブラすら要りません(※)。

"v" constraintのテスト

// a.c

void _start()
{
	int b[100];
	int v;

	__asm__ volatile ("vlw.v %0, %1\n"
		: "=&v"(v) : "A"(b[10]));
}

ビルドして、逆アセンブルしてみます。

"v" constraintのテストをビルド、逆アセンブル
$ riscv32-unknown-elf-gcc -Wall -g -march=rv32gcv -mabi=ilp32f -nostdlib -O2 a.c

$ riscv32-unknown-elf-objdump -drS a.out

a.out:     file format elf32-littleriscv

Disassembly of section .text:

00010054 <_start>:
void _start()
{
   10054:       7165                    addi    sp,sp,-400
        int b[100];
        int v;

        __asm__ volatile ("vlw.v %0, %1\n"
   10056:       103c                    addi    a5,sp,40
   10058:       1207e007                vlw.v   v0,(a5)
                : "=&v"(v) : "A"(b[10]));
}
   1005c:       6159                    addi    sp,sp,400
   1005e:       8082                    ret

それらしきベクトルレジスタ(v0)が出力されているようです。めでたし、めでたし。と言いたいところですが、実は全然ダメです。

  • 変数がintなのでsizeof(v) が4になる、ベクトルを扱いたい
  • 最適化オプションをO0にするとコンパイラがinternal errorを出す

まだまだ改善の余地があります。これも今後、調べていこうと思います。

(※)もしアセンブルまで実行したければ、RISC-VのGitHubにあるbinutilsを使ってください(GitHubへのリンク)。ビルド方法はUpstreamのコードとほぼ同じ(2019年4月19日の日記参照)です。唯一の違いはconfigure時に --with-system-readlineを付けないと、readlineがないと言われてエラーになる点です。

編集者:すずき(2023/09/24 11:48)

コメント一覧

  • コメントはありません。
open/close この記事にコメントする



2020年3月28日

GCCを調べる - その8-2 - レジスタとレジスタクラス

目次: GCC

レジスタ追加の変更の要はREG_CLASS_CONTENTSです。このマクロは32ビット整数の配列で、各レジスタ番号がどのレジスタの仲間(enum reg_class)に属するかを指定するテーブルです。こんな風に変更します。

REG_CLASS_CONTENTSの変更内容

 #define REG_CLASS_CONTENTS						\
 {									\
-  { 0x00000000, 0x00000000, 0x00000000 },	/* NO_REGS */		\
-  { 0xf003fcc0, 0x00000000, 0x00000000 },	/* SIBCALL_REGS */	\
-  { 0xffffffc0, 0x00000000, 0x00000000 },	/* JALR_REGS */		\
-  { 0xffffffff, 0x00000000, 0x00000000 },	/* GR_REGS */		\
-  { 0x00000000, 0xffffffff, 0x00000000 },	/* FP_REGS */		\
-  { 0x00000000, 0x00000000, 0x00000003 },	/* FRAME_REGS */	\
-  { 0xffffffff, 0xffffffff, 0x00000003 }	/* ALL_REGS */		\
+  { 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* NO_REGS */		\
+  { 0xf003fcc0, 0x00000000, 0x00000000, 0x00000000 },	/* SIBCALL_REGS */	\
+  { 0xffffffc0, 0x00000000, 0x00000000, 0x00000000 },	/* JALR_REGS */		\
+  { 0xffffffff, 0x00000000, 0x00000000, 0x00000000 },	/* GR_REGS */		\
+  { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 },	/* FP_REGS */		\
+  { 0x00000000, 0x00000000, 0xffffffff, 0x00000000 },	/* VP_REGS */		\
+  { 0x00000000, 0x00000000, 0x00000000, 0x00000003 },	/* FRAME_REGS */	\
+  { 0xffffffff, 0xffffffff, 0xffffffff, 0x00000003 }	/* ALL_REGS */		\
 }
                              ↑ここの3列目を足した

行方向は、ビットフィールドになっており非常にわかりにくいです。0要素目の0ビット目、0要素目の1ビット目、…という順に見ます。整数内では右から左(右が上位ビット)、要素間では左から右(左が0要素目)に見ます。

列方向はenum reg_classの整数値と一致しますのでさほど難しくはないでしょう。

REG_CLASS_CONTENTSの見方
行と列の意味

  →→ 行方向、レジスタ番号(0〜FIRST_PSEUDO_REGISTER - 1まで)
↓
↓
列方向、enum reg_classを整数に直したもの


行方向の見方

例えば3行目(GR_REGS)がこうなっていたとすると、
{ 0x0000000f, 0x0000000c, },

- 0要素目(レジスタ番号0〜31のクラス): 0x0000000f
  - 0, 1, 2, 3ビット目が1 = レジスタ番号0〜3はGR_REGS
  - 他のレジスタについては言及しない
- 1要素目(レジスタ番号32〜63のクラス): 0x0000000c
  - 2, 3ビット目が1 = レジスタ番号34〜35はGR_REGS
  - 他のレジスタについては言及しない

ALL_REGSは全レジスタに1をセットしますので、ビットフィールドのルールがわかりやすいと思います。今回はレジスタが98本なので、3要素(32 * 3 = 96)+ 最後の要素は2ビット分だけ1にセットしています。

今回はVR_REGSという新たなレジスタクラスを足したいので、行が一つ増えます。レジスタの総数も増えるので、列方向も増えます。ちょうど良いことに新規に追加するレジスタは32本なので、整数1要素分を増やすだけです。

コード上での扱い

このマクロは直接使用されるわけではなく、別の配列にコピーされます。

REG_CLASS_CONTENTSが使われているところ

// gcc/reginfo.c

static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
  = REG_CLASS_CONTENTS;

...

/* Function called only once per target_globals to initialize the
   target_hard_regs structure.  Once this is done, various switches
   may override.  */
void
init_reg_sets (void)
{
  int i, j;

  /* First copy the register information from the initial int form into
     the regsets.  */

  for (i = 0; i < N_REG_CLASSES; i++)
    {
      CLEAR_HARD_REG_SET (reg_class_contents[i]);

      /* Note that we hard-code 32 here, not HOST_BITS_PER_INT.  */
      for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
	if (int_reg_class_contents[i][j / 32]    //★★ここで参照している
	    & ((unsigned) 1 << (j % 32)))
	  SET_HARD_REG_BIT (reg_class_contents[i], j);
    }


// gcc/reginfo.c

struct target_hard_regs default_target_hard_regs;


// gcc/hard-reg-set.h

#if SWITCHABLE_TARGET  //★★x86, ARM, MIPSなどはSWITCHABLE_TARGET = 1, RISC-Vは0のようだ
extern struct target_hard_regs *this_target_hard_regs;
#else
#define this_target_hard_regs (&default_target_hard_regs)
#endif

#define reg_class_contents \r  (this_target_hard_regs->x_reg_class_contents)

難しそうに見えてやっていることはint_reg_class_contentsからdefault_target_hard_regs->x_reg_class_contentsへビットを移し替えているだけです。違いはint_reg_class_contentsが必ず32ビット幅であるのに対し、x_reg_class_contentsはアーキテクチャ最速の整数幅(x86_64なら64bitになるでしょう)である点です。

個人的には可読性を殺してまでやる意味あるの……?と疑問ですが、きっとGCC内で頻繁に呼ばれ速度的に重要なポイントだったのでしょう。

編集者:すずき(2023/09/24 11:48)

コメント一覧

  • コメントはありません。
open/close この記事にコメントする



link もっと前
2020年4月6日 >>> 2020年3月28日
link もっと後

管理用メニュー

link 記事を新規作成

<2020>
<<<04>>>
---1234
567891011
12131415161718
19202122232425
2627282930--

最近のコメント5件

  • link 24年4月22日
    hdkさん (04/24 08:36)
    「うちのHHFZ4310は15年突破しまし...」
  • link 24年4月22日
    すずきさん (04/24 00:37)
    「ちゃんと数えてないですけど蛍光管が10年...」
  • link 24年4月22日
    hdkさん (04/23 20:52)
    「おお... うちのHHFZ4310より後...」
  • link 20年6月19日
    すずきさん (04/06 22:54)
    「ディレクトリを予め作成しておけば良いです...」
  • link 20年6月19日
    斎藤さん (04/06 16:25)
    「「Preferencesというメニューか...」

最近の記事3件

  • link 24年4月25日
    すずき (04/26 16:49)
    「[AVIFの変換] AVIFが読めないアプリケーションがたまにあるので、AVIF(AV1 Image File Format)...」
  • link 24年2月7日
    すずき (04/24 02:52)
    「[複数の音声ファイルのラウドネスを統一したい] PCやデジタル音楽プレーヤーで音楽を聞いていると、曲によって音量の大小が激しく...」
  • link 24年4月22日
    すずき (04/23 20:13)
    「[仕事部屋の照明が壊れた] いきなり仕事部屋のシーリングライトが消えました。蛍光管の寿命にしては去年(2022年10月19日の...」
link もっとみる

こんてんつ

open/close wiki
open/close Linux JM
open/close Java API

過去の日記

open/close 2002年
open/close 2003年
open/close 2004年
open/close 2005年
open/close 2006年
open/close 2007年
open/close 2008年
open/close 2009年
open/close 2010年
open/close 2011年
open/close 2012年
open/close 2013年
open/close 2014年
open/close 2015年
open/close 2016年
open/close 2017年
open/close 2018年
open/close 2019年
open/close 2020年
open/close 2021年
open/close 2022年
open/close 2023年
open/close 2024年
open/close 過去日記について

その他の情報

open/close アクセス統計
open/close サーバ一覧
open/close サイトの情報

合計:  counter total
本日:  counter today

link About www.katsuster.net
RDFファイル RSS 1.0

最終更新: 04/26 16:49