link もっと前
   2020年 9月 10日 -
      2020年 9月 1日  
link もっと後

link 未来から過去へ表示(*)
link 過去から未来へ表示

2020年 9月 10日

link permalink

link 編集する

MATLAB のインストール

自動車業界(だけじゃないですが)で重宝されている MATLAB を家で使えることになったので、インストールしてみました。

ダウンロードは Mathworks のサイトからできますが、たぶん会社や学校からもらえるアカウント、アクティベーション番号が必要です。MATLAB は個人でも買えますがメチャクチャ値段が高く、私は買う気は起きません……。

MATLAB は Debian 9, Debian 10 には対応しています(System Requirements for MATLAB R2020a - MATLAB & Simulink)が、Debian Testing には対応していません。インストーラを起動した瞬間にクラッシュします。

Debian Testing: 通常版インストーラはクラッシュ
$ cd matlab_archive
$ unzip matlab_R2020a_glnxa64.zip

$ ./install

terminate called after throwing an instance of 'std::runtime_error'
  what():  Unable to launch the MATLABWindow application
Aborted

ありがたいことに、Linux 向けの MATLAB インストーラは通常版と legacy 版が同梱されています。

Debian Testing: legacy 版のインストーラは動く
$ cd matlab_archive
$ unzip matlab_R2020a_glnxa64.zip

$ bin/glnxa64/install_unix_legacy

推奨された使い方ではないと思いますが legacy 版ならばインストーラが動きます。質問にはハイハイ答えておけば、そんなに問題ないはずです。

起動するとき

MATLAB を起動するときに変なエラーが出ます。

g_ptr_array_copy が見つからない
$ matlab

MATLAB is selecting SOFTWARE OPENGL rendering.
matlab_install_dir/bin/glnxa64/jcef_helper: symbol lookup error: /usr/lib/x86_64-linux-gnu/libpango-1.0.so.0: undefined symbol: g_ptr_array_copy

このエラーは MATLAB の動的ライブラリの構成がおかしいことが原因です。libglib-2.0.so を MATLAB 内部に抱えているのですが、libpango-1.0.so はシステム側を使うため、バージョンの非互換が発生します。libpango-1.0.so も内部に抱えれば良いのに??何だか中途半端な作りですね。

システム側の libglib-2.0.so を使う
$ ldd bin/glnxa64/jcef_helper | grep glib

libglib-2.0.so.0 => matlab_install_dir/bin/glnxa64/../../cefclient/sys/os/glnxa64/libglib-2.0.so.0 (0x00007f43ac828000)

★MATLAB 内部に抱えているライブラリをダイナミックリンクする


$ cd matlab_install_dir/cefclient/sys/os/glnxa64
$ mv libglib-2.0.so _libglib-2.0.so
$ mv libglib-2.0.so.0 _libglib-2.0.so.0
$ mv libglib-2.0.so.0.5600.1 _libglib-2.0.so.0.5600.1

$ ldd bin/glnxa64/jcef_helper | grep glib

libglib-2.0.so.0 => /usr/lib/x86_64-linux-gnu/libglib-2.0.so.0 (0x00007f10b2e6d000)

★システム側のライブラリをダイナミックリンクする

MATLAB の内部で抱えている libglib-2.0.so を無視して、システム側の libglib-2.0.so をダイナミックリンクすればエラーは出ません。これも推奨された使い方ではないと思いますが、とりあえず動いたのでめでたしめでたし。

[編集者: すずき]
[更新: 2020年 9月 11日 07:54]

コメント一覧

  • すずき 
    追加情報。最新の Debian Testing では動かなくなってしまいました。
    おとなしく Ubuntu か Debian Stable にインストールした方が、余計な苦労をしなくて良いと思います。 
    (2020年10月07日 16:48:21)
open/close この記事にコメントする



2020年 9月 6日

link permalink

link 編集する

FreeRTOS を調べる - まとめリンク

日記が増えすぎて、一覧が欲しくなってきたので作りました。

今後、日記が増えたら追加します。

[編集者: すずき]
[更新: 2020年 9月 14日 10:21]

コメント一覧

  • コメントはありません。
open/close この記事にコメントする



2020年 9月 5日

link permalink

link 編集する

FreeRTOS で遊ぼう その 3 - FreeRTOS を virt に移植(ブート編)

目次: FreeRTOS を調べる - まとめリンク

前回 UART ドライバと main() 関数を実装しました。今回は main() に至るまでのブート部分を実装します。ざっくり言うとアセンブラで書いたスタートコードと、リンカスクリプトが必要です。

メモリマップ

RISC-V QEMU virt マシンのメモリマップは下記のようになっています。使わないハードウェアは載せていません。

  • 0x02000000: CLINT
  • 0x10000000: 16550 UART
  • 0x80000000: RAM

今回は RAM の一部を ROM の代わりとして使います。0x80000000 は本来 RAM ですが ROM の代わりとして扱います。0x80080000 以降を RAM として扱います。本当は SPI Flash ROM を使ったほうが良いですが、手抜き実装です。リンカスクリプトは下記のようにしました。

リンカスクリプト

OUTPUT_ARCH( "riscv" )
ENTRY( _start )

MEMORY
{
	rom (rxa) : ORIGIN = 0x80000000, LENGTH = 512K
	ram (wxa) : ORIGIN = 0x80080000, LENGTH = 512K
}

SECTIONS
{
	.init :
	{
		_text = .;
		KEEP (*(SORT_NONE(.init)))
	} >rom AT>rom
	
	.text :
	{

		*(.text.unlikely .text.unlikely.*)
		*(.text.startup .text.startup.*)
		*(.text .text.*)
		*(.gnu.linkonce.t.*)
	} >rom AT>rom
	
	.fini :
	{
		KEEP (*(SORT_NONE(.fini)))
		_etext = .;
	} >rom AT>rom

	.rodata.align :
	{
		. = ALIGN(4);
		_rodata = .;
	} >rom AT>rom

	.rodata.start :
	{
		_rodata_lma = LOADADDR(.rodata.start);
	} >rom AT>rom

	.rodata :
	{
		*(.rdata)
		*(.rodata .rodata.*)
		*(.gnu.linkonce.r.*)

		. = ALIGN(4);
		_erodata = .;
	} >rom AT>rom

	.data.align :
	{
		. = ALIGN(4);
		_data = .;
	} >ram AT>rom

	.data.start :
	{
		_data_lma = LOADADDR(.data.start);
	} >ram AT>rom

	.data :
	{
		*(.data .data.*)
		*(.gnu.linkonce.d.*)
		. = ALIGN(8);
		PROVIDE( __global_pointer$ = . + 0x800 );
		*(.sdata .sdata.*)
		*(.sdata2 .sdata2.*)
		*(.gnu.linkonce.s.*)
		. = ALIGN(8);
		*(.srodata.cst16)
		*(.srodata.cst8)
		*(.srodata.cst4)
		*(.srodata.cst2)
		*(.srodata .srodata.*)

		. = ALIGN(4);
		_edata = .;
	} >ram AT>rom

	.bss.align :
	{
		. = ALIGN(4);
		_bss = .;
	} >ram AT>rom

	.bss.start :
	{
		_bss_lma = LOADADDR(.bss.start);
	} >ram AT>rom

	.bss :
	{
		*(.sbss*)
		*(.gnu.linkonce.sb.*)
		*(.bss .bss.*)
		*(.gnu.linkonce.b.*)
		*(COMMON)

		. = ALIGN(4);
		_ebss = .;
	} >ram AT>rom

	. = ALIGN(8);
	_end = .;

	.stack :
	{
		. = ALIGN(16);
		_stack0_bottom = .;
		. += __stack_size;
		_stack0_top = .;
	} >ram AT>ram
}

ビルドしたバイナリを nm や readelf で見るときわかりやすくするために、あえて変なセクション(.*.align, .*.start)をいくつか作っています。このように見えます。

nm や readelf で見たとき
$ riscv64-unknown-elf-nm -n a.out | less

★.bss.align に ALIGN(4) と書いたとき

80002ea8 R __clz_tab
80002fa8 A _data_lma
80002fa8 R _erodata  ★.rodata の終わり(ROM 領域を 0x80000000 としている)
80002fb8 A _bss_lma
80080000 D _data     ★.data の始まり(RAM 領域を 0x80080000 としている)
80080000 D pullNextTime
80080008 D uxTimerIncrementsForOneTick
8008000c D xISRStackTop
80080010 B _bss      ★.bss の始まり    ★4bytes align になっている(.data の終わりと連続している)
80080010 D _edata    ★.data の終わり
80080010 b xQueue

...


★.data.align に ALIGN(2048) と書いたとき

80002ca8 R __clz_tab
80002da8 A _data_lma
80002da8 R _erodata  ★.rodata の終わり(ROM 領域を 0x80000000 としている)
80002db8 A _bss_lma
80080000 D _data     ★.data の始まり(RAM 領域を 0x80080000 としている)
80080000 D pullNextTime
80080008 D uxTimerIncrementsForOneTick
8008000c D xISRStackTop
80080010 D _edata    ★.data の終わり
80080800 D __global_pointer$
80080800 B _bss      ★.bss の始まり    ★2KB align になっている(.data の終わりと連続して「いない」)
80080800 b xQueue

...


$ riscv64-unknown-elf-readelf -a a.out | less

★.bss.align に ALIGN(4) と書いたとき

Section Headers:
  [Nr] Name              Type            Addr     Off    Size   ES Flg Lk Inf Al
  [ 0]                   NULL            00000000 000000 000000 00      0   0  0
  [ 1] .init             PROGBITS        80000000 001000 00006c 00  AX  0   0  1
  [ 2] .text             PROGBITS        80000100 001100 002d2c 00  AX  0   0 256
  [ 3] .rodata.align     PROGBITS        80002e2c 004010 000000 00  WA  0   0  1
  [ 4] .rodata           PROGBITS        80002e2c 003e2c 00017c 00   A  0   0  4
  [ 5] .data.align       PROGBITS        80080000 004010 000000 00  WA  0   0  1
  [ 6] .data             PROGBITS        80080000 004000 000010 00  WA  0   0  4
  [ 7] .bss.align        NOBITS          80080010 000000 000000 00  WA  0   0  1
  [ 8] .bss              NOBITS          80080010 004010 0040c0 00  WA  0   0 16    ★4bytes align になっている
  [ 9] .stack            NOBITS          800840d0 0040d0 00012c 00  WA  0   0  1


★.data.align に ALIGN(2048) と書いたとき

ection Headers:
  [Nr] Name              Type            Addr     Off    Size   ES Flg Lk Inf Al
  [ 0]                   NULL            00000000 000000 000000 00      0   0  0
  [ 1] .init             PROGBITS        80000000 001000 000068 00  AX  0   0  1
  [ 2] .text             PROGBITS        80000100 001100 002b2c 00  AX  0   0 256
  [ 3] .rodata.align     PROGBITS        80002c2c 004010 000000 00  WA  0   0  1
  [ 4] .rodata           PROGBITS        80002c2c 003c2c 00017c 00   A  0   0  4
  [ 5] .data.align       PROGBITS        80080000 004010 000000 00  WA  0   0  1
  [ 6] .data             PROGBITS        80080000 004000 000010 00  WA  0   0  4
  [ 7] .bss.align        NOBITS          80080010 004010 0007f0 00  WA  0   0  1
  [ 8] .bss              NOBITS          80080800 004800 0040c0 00  WA  0   0 16    ★2KB align になっている
  [ 9] .stack            NOBITS          800848c0 0048c0 00012c 00  WA  0   0  1

ALIGN(4) を ALIGN(2048) など、大きめの値に変えたときの様子を載せました。変なセクション .*.align がアドレスのアラインメントをしている様子が nm でも readelf でもわかりやすいですよね?だめ?上記は .bss の例ですが、他のセクションでも同様です。

ブートコード

ブートコードはアセンブラで書く必要があります。

ブートコード

// freertos/FreeRTOS/Demo/RISC-V-Qemu-virt_GCC/start.S

#include "riscv-reg.h"

#if __riscv_xlen == 32
#define REGSIZE		4
#define LOAD		lw
#define STOR		sw
#elif __riscv_xlen == 64
#define REGSIZE		8
#define LOAD		ld
#define STOR		sd
#endif /* __riscv_xlen */

	.section .init
	.globl _start
	.type _start,@function
_start:
	.cfi_startproc
	.cfi_undefined ra
.option push
.option norelax
	la gp, __global_pointer$
.option pop

	la sp, _stack0_top

	# Load data section
	la a0, _data_lma
	la a1, _data
	la a2, _edata
	bgeu a1, a2, 2f
1:
	LOAD t0, (a0)
	STOR t0, (a1)
	addi a0, a0, REGSIZE
	addi a1, a1, REGSIZE
	bltu a1, a2, 1b
2:

	# Clear bss section
	la a0, _bss
	la a1, _ebss
	bgeu a0, a1, 2f
1:
	STOR zero, (a0)
	addi a0, a0, REGSIZE
	bltu a0, a1, 1b
2:

	/* argc, argv, envp is 0 */
	li a0, 0
	li a1, 0
	li a2, 0
	j main
	.cfi_endproc

実装は非常に単純です。.data を ROM 領域から RAM 領域にコピーし、.bss を 0 クリアして main() に飛ぶだけです。

以上の実装でビルドして(make するだけ)、動かします。

動作確認
$ qemu-system-riscv32 -nographic -machine virt -net none -chardev stdio,id=con,mux=on -serial chardev:con -mon chardev=con,mode=readline -bios none -kernel a.out

Hello FreeRTOS!
Blink

Blink

Blink

...

動きましたね。良かった良かった。 改行が余計に入っちゃってるのが気になる場合は main.c の "Blink\r\n" を "Blink" にすると治ります。

[編集者: すずき]
[更新: 2020年 9月 5日 22:39]

コメント一覧

  • コメントはありません。
open/close この記事にコメントする



2020年 9月 4日

link permalink

link 編集する

FreeRTOS で遊ぼう その 2 - FreeRTOS を virt に移植(ドライバ準備編)

目次: FreeRTOS を調べる - まとめリンク

前回は既にあるデモアプリのビルドシステムを組み替えて RISC-V QEMU sifive_e マシン(SiFive HiFive1 相当)上で FreeRTOS を動かしました。今回は RISC-V QEMU virt マシン上で FreeRTOS を動かします。

マシンの違いですが、まず UART が違います。HiFive1 は SiFive UART、virt は 16550 です。UART を動かすための簡易的なドライバを書きます。

16550 の出力だけするドライバ

// freertos/FreeRTOS/Demo/RISC-V-Qemu-virt_GCC/ns16550.c

#include <stdint.h>

#include "ns16550.h"

/* register definitions */
#define REG_RBR		0x00 /* Receiver buffer reg. */
#define REG_THR		0x00 /* Transmitter holding reg. */
#define REG_IER		0x01 /* Interrupt enable reg. */
#define REG_IIR		0x02 /* Interrupt ID reg. */
#define REG_FCR		0x02 /* FIFO control reg. */
#define REG_LCR		0x03 /* Line control reg. */
#define REG_MCR		0x04 /* Modem control reg. */
#define REG_LSR		0x05 /* Line status reg. */
#define REG_MSR		0x06 /* Modem status reg. */
#define REG_SCR		0x07 /* Scratch reg. */
#define REG_BRDL	0x00 /* Divisor latch (LSB) */
#define REG_BRDH	0x01 /* Divisor latch (MSB) */

/* Line status */
#define LSR_DR			0x01 /* Data ready */
#define LSR_OE			0x02 /* Overrun error */
#define LSR_PE			0x04 /* Parity error */
#define LSR_FE			0x08 /* Framing error */
#define LSR_BI			0x10 /* Break interrupt */
#define LSR_THRE		0x20 /* Transmitter holding register empty */
#define LSR_TEMT		0x40 /* Transmitter empty */
#define LSR_EIRF		0x80 /* Error in RCVR FIFO */

uint8_t readb( uintptr_t addr )
{
	return *((uint8_t *) addr );
}

void writeb( uint8_t b, uintptr_t addr )
{
	*((uint8_t *) addr ) = b;
}

void ns16550_out( struct device *dev, unsigned char c )
{
	uintptr_t addr = dev->addr;

	while ( (readb( addr + REG_LSR ) & LSR_THRE) == 0 ) {
		/* busy wait */
	}

	writeb( c, addr + REG_THR );
}

このドライバは初期化も設定も何もせず、いきなり出力だけ行う手抜き実装です。QEMU では動きますが、おそらく実機では動かないでしょう。

main を書き換える

元のコードは main.c にSiFive UART 用のシリアルの出力コードが入っているので、これを削ります。また main.c と main_blinky.c, main_full.c に別れていますが、あまり複雑なデモは要りません。main_full.c の方は削って、main.c に統合します。

main.c(一部)

// freertos/FreeRTOS/Demo/RISC-V-Qemu-virt_GCC/main.c

static void prvQueueSendTask( void *pvParameters )
{
TickType_t xNextWakeTime;
const unsigned long ulValueToSend = 100UL;
BaseType_t xReturned;

	/* Remove compiler warning about unused parameter. */
	( void ) pvParameters;

	/* Initialise xNextWakeTime - this only needs to be done once. */
	xNextWakeTime = xTaskGetTickCount();

	for( ;; )
	{
		/* Place this task in the blocked state until it is time to run again. */
		vTaskDelayUntil( &xNextWakeTime, mainQUEUE_SEND_FREQUENCY_MS );

		/* Send to the queue - causing the queue receive task to unblock and
		toggle the LED.  0 is used as the block time so the sending operation
		will not block - it shouldn't need to block as the queue should always
		be empty at this point in the code. */
		xReturned = xQueueSend( xQueue, &ulValueToSend, 0U );
		configASSERT( xReturned == pdPASS );
	}
}

/*-----------------------------------------------------------*/

static void prvQueueReceiveTask( void *pvParameters )
{
unsigned long ulReceivedValue;
const unsigned long ulExpectedValue = 100UL;
const char * const pcPassMessage = "Blink\r\n";
const char * const pcFailMessage = "Unexpected value received\r\n";

	/* Remove compiler warning about unused parameter. */
	( void ) pvParameters;

	for( ;; )
	{
		/* Wait until something arrives in the queue - this task will block
		indefinitely provided INCLUDE_vTaskSuspend is set to 1 in
		FreeRTOSConfig.h. */
		xQueueReceive( xQueue, &ulReceivedValue, portMAX_DELAY );

		/*  To get here something must have been received from the queue, but
		is it the expected value?  If it is, toggle the LED. */
		if( ulReceivedValue == ulExpectedValue )
		{
			puts( pcPassMessage );
			ulReceivedValue = 0U;
		}
		else
		{
			puts( pcFailMessage );
		}
	}
}

/*-----------------------------------------------------------*/

int main( void )
{
	puts( "Hello FreeRTOS!" );

	/* Create the queue. */
	xQueue = xQueueCreate( mainQUEUE_LENGTH, sizeof( uint32_t ) );

	if( xQueue != NULL )
	{
		/* Start the two tasks as described in the comments at the top of this
		file. */
		xTaskCreate( prvQueueReceiveTask, "Rx", configMINIMAL_STACK_SIZE * 2U, NULL,
					mainQUEUE_RECEIVE_TASK_PRIORITY, NULL );
		xTaskCreate( prvQueueSendTask, "TX", configMINIMAL_STACK_SIZE * 2U, NULL,
					mainQUEUE_SEND_TASK_PRIORITY, NULL );
	}

	vTaskStartScheduler();

	return 0;
}


// freertos/FreeRTOS/Demo/RISC-V-Qemu-virt_GCC/riscv-virt.c

int puts( const char *s )
{
	struct device dev;
	size_t i;

	dev.addr = NS16550_ADDR;

	for (i = 0; i < strlen(s); i++)
	{
		ns16550_out( &dev, s[i] );
	}
	ns16550_out( &dev, '\n' );

	return 0;
}

別に POSIX 信者というわけでもないんですが、ついでに puts() もどきを実装しておきました。

続きはまた今度。

[編集者: すずき]
[更新: 2020年 9月 5日 22:39]

コメント一覧

  • コメントはありません。
open/close この記事にコメントする



2020年 9月 3日

link permalink

link 編集する

FreeRTOS で遊ぼう その 1 - FreeRTOS 入門

目次: FreeRTOS を調べる - まとめリンク

以前 RTOS 界の新星 Zephyr を調べて、新たな RISC-V ボードの定義を作りました。今回は RTOS の老舗 FreeRTOS を調べます。FreeRTOS は GPLv2 で開発されていましたが、Amazon が買収した後は MIT ライセンスになっています。IoT 分野での企業ユーザー(大抵コード公開を嫌がる)を重視したんでしょう。

FreeRTOS のコード取得
$ git clone https://github.com/FreeRTOS/FreeRTOS freertos

Cloning into 'freertos'...
remote: Enumerating objects: 149823, done.
Receiving objects:   0% (1/149823)
remote: Total 149823 (delta 0), reused 0 (delta 0), pack-reused 149823
Receiving objects: 100% (149823/149823), 115.38 MiB | 8.29 MiB/s, done.
Resolving deltas: 100% (107018/107018), done.
Updating files: 100% (12962/12962), done.

$ git submodule update --init --recursive

FreeRTOS のカーネルは FreeRTOS/Source に配置されており、リポジトリは https://github.com/FreeRTOS/FreeRTOS-Kernel です。

FreeRTOS 上で動く何かを作成する場合は freertos/FreeRTOS/Demo の下に作るルールになっているようです。たくさんのアーキテクチャ、ボード向けのコードが格納されています。統一感がなくて、どれを見たら良いのか良くわからないのが難点です。

ツールチェーンの準備

RISC-V 32ビット用でしたら、以前 Zephyr 用に作成したツールチェーン2020年 1月 31日の日記参照)が流用できます。ARM やそれ以外の環境でも Crosstool-NG を使えばたいてい作成できるはずです。

既存のデモを作り変える

Demo ディレクトリの下には RISC-V QEMU 向けのプロジェクト(正確には SiFive HiFive1 エミュレーション環境向け)が既に 1つあります。FreeRTOS/Demo/RISC-V-Qemu-sifive_e-Eclipse-GCC です。このデモは Eclipse 向けになっているので、Makefile 向けに作り直します。Eclipse 関連のファイルを削除して Makefile を作成するだけです。

Makefile

CROSS=riscv64-unknown-elf-
CC=$(CROSS)gcc
OBJCOPY=$(CROSS)objcopy
ARCH=$(CROSS)ar

RTOS_SOURCE_DIR=../../Source
DEMO_SOURCE_DIR=../Common/Minimal
LIBWRAP_SOURCE_DIR=./freedom-e-sdk/libwrap

CPPFLAGS = -g -O2 -Wall -march=rv32ima -mabi=ilp32 -mcmodel=medlow \
	-fmessage-length=0 \
	-ffunction-sections \
	-fdata-sections \
	-fno-builtin-printf \
	-DportasmHANDLE_INTERRUPT=handle_trap \
	-I . -I ../Common/include \
	-I $(RTOS_SOURCE_DIR)/include \
	-I $(RTOS_SOURCE_DIR)/portable/GCC/RISC-V \
	-I $(RTOS_SOURCE_DIR)/portable/GCC/RISC-V/chip_specific_extensions/RV32I_CLINT_no_extensions \
	\
	-I freedom-e-sdk/include \
	-I freedom-e-sdk/env \
	-I freedom-e-sdk/env/freedom-e300-hifive1

CFLAGS =
ASFLAGS =
LDFLAGS = \
	-march=rv32ima -mabi=ilp32 -mcmodel=medlow \
	-Tfreedom-e-sdk/env/freedom-e300-hifive1/flash.lds \
	-Xlinker --gc-sections \
	-Xlinker --defsym=__stack_size=300

SRCS = \
	main.c \
	blinky_demo/main_blinky.c \
	$(DEMO_SOURCE_DIR)/EventGroupsDemo.c \
	$(DEMO_SOURCE_DIR)/TaskNotify.c \
	$(DEMO_SOURCE_DIR)/TimerDemo.c \
	$(DEMO_SOURCE_DIR)/blocktim.c \
	$(DEMO_SOURCE_DIR)/dynamic.c \
	$(DEMO_SOURCE_DIR)/recmutex.c \
	$(RTOS_SOURCE_DIR)/event_groups.c \
	$(RTOS_SOURCE_DIR)/list.c \
	$(RTOS_SOURCE_DIR)/queue.c \
	$(RTOS_SOURCE_DIR)/stream_buffer.c \
	$(RTOS_SOURCE_DIR)/tasks.c \
	$(RTOS_SOURCE_DIR)/timers.c \
	$(RTOS_SOURCE_DIR)/portable/MemMang/heap_4.c \
	$(RTOS_SOURCE_DIR)/portable/GCC/RISC-V/port.c

ASMS = \
	$(RTOS_SOURCE_DIR)/portable/GCC/RISC-V/portASM.S \
	\
	freedom-e-sdk/env/start.S \
	freedom-e-sdk/env/entry.S

OBJS = $(SRCS:.c=.o) $(ASMS:.S=.o)

a.out: $(OBJS) $(CRT0) Makefile
	$(CC) $(CFLAGS) $(LDFLAGS) $(OBJS) -nostartfiles $(CRT0) $(LINKER_FLAGS) -o $@

clean:
	rm -rf $(OBJS)

元のコードでは --defsym=__stack_size=350 なんですが、そのまま使うとなぜか下記のリンクエラーが出るので、少しだけ減らしています。

__stack_size=350 のときのリンクエラー
x-tools/riscv64-unknown-elf/lib/gcc/riscv64-unknown-elf/10.2.0/../../../../riscv64-unknown-elf/bin/ld: section .stack VMA [0000000080003e00,0000000080003fff] overlaps section .bss VMA [0000000080000440,0000000080003ebb]
collect2: error: ld returned 1 exit status
make: *** [Makefile:105: rtosdemo.elf] Error 1

リンカースクリプトを見る限り HiFive1 は RAM が 16KB しかないようで、あまり大きな領域を取ろうとするとすぐに溢れてしまいます。

リンカースクリプト

// freertos/FreeRTOS/Demo/RISC-V-Qemu-virt_GCC/freedom-e-sdk/env/freedom-e300-hifive1/flash.lds

MEMORY
{
  flash (rxai!w) : ORIGIN = 0x20400000, LENGTH = 512M
  ram (wxa!ri) : ORIGIN = 0x80000000, LENGTH = 16K
}

Makefile を作ったら make し、動作確認します。

動作確認
$ qemu-system-riscv32 -nographic -machine sifive_e -net none -chardev stdio,id=con,mux=on -serial chardev:con -mon chardev=con,mode=readline -bios none -kernel a.out

StartingBlink
Blink
Blink
Blink
Blink
...

動作しました。QEMU を止めるまで Blink という文字が延々と出続けます。最初の Starting に改行が入っていないのは元々です。理由は良くわかりません、作った人がミスっただけかな?

[編集者: すずき]
[更新: 2020年 9月 5日 22:39]

コメント一覧

  • コメントはありません。
open/close この記事にコメントする



2020年 9月 2日

link permalink

link 編集する

Zephyr の 16550 シリアルドライバ その 2

目次: Zephyr を調べる - まとめリンク

以前、RISC-V QEMU の -machine virt で、シリアルドライバ 16550 を使う設定を作りましたが、Zephyr 2.3.0 で動かなくなってしまいました。悲しい。

変更点はレジスタアドレスシフト量の設定方法です。DT_NS16550_REG_SHIFT で設定する方式でしたが、デバイスツリーから設定するように変更されました。

NS16550 のコードを変えている Zephyr 本家のコミット
commit 70a0063b69b06812c5726077646cffae3b8e199c
Author: Kumar Gala <kumar.gala@linaro.org>
Date:   Fri Mar 27 06:03:59 2020 -0500

    drivers: serial: uart_ns16550: Convert to new DT_INST macros

    Convert older DT_INST_ macro use the new include/devicetree.h
    DT_INST macro APIs.

    Signed-off-by: Kumar Gala <kumar.gala@linaro.org>
NS16550 のコードの変更内容

// zephyr/drivers/serial/uart_ns16550.c

-#ifdef DT_INST_0_NS16550_REG_SHIFT
-#define UART_REG_ADDR_INTERVAL (1<<DT_INST_0_NS16550_REG_SHIFT)
+#if DT_INST_NODE_HAS_PROP(0, reg_shift)
+#define UART_REG_ADDR_INTERVAL (1<<DT_INST_PROP(0, reg_shift))
 #endif

デバイスツリーに何を書けば良いのかは、デバイスツリーのドキュメント(ns16550.yaml)を見ましょう。プロパティ名と説明が書いてあります。

デバイスツリーの変更内容

// zephyr/dts/bindings/serial/ns16550.yaml

properties:
    reg:
      required: true

    reg-shift:
      type: int
      required: false
      description: quantity to shift the register offsets by


// zephyr/dts/riscv/riscv32-virt.dtsi

...

		uart0: serial@10000000 {
			compatible = "ns16550";
			reg = <0x10000000 0x100>;
			clock-frequency = <3686400>;
			label = "uart_0";
			current-speed = <115200>;
			reg-shift = <0>;    /* ★これを追加★ */
		};


// zephyr/soc/riscv/riscv-privilege/rv32-virt/soc.h

...

/* ★★下記定義は全て不要★★ */

#define DT_UART_NS16550_PORT_0_BASE_ADDR    DT_INST_0_NS16550_BASE_ADDRESS
#define DT_UART_NS16550_PORT_0_BAUD_RATE    DT_INST_0_NS16550_CURRENT_SPEED
#define DT_UART_NS16550_PORT_0_CLK_FREQ     DT_INST_0_NS16550_CLOCK_FREQUENCY
#define DT_UART_NS16550_PORT_0_NAME         DT_INST_0_NS16550_LABEL

#define DT_NS16550_REG_SHIFT                0

以上の修正を入れて動かします。

動作確認

$ qemu-system-riscv32 -nographic -machine virt -net none -chardev stdio,id=con,mux=on -serial chardev:con -mon chardev=con,mode=readline -kernel zephyr/zephyr.elf -bios none

*** Booting Zephyr OS build zephyr-v2.3.0-2350-g2f294fcc2da8  ***               
Hello World! QEMU RV32 virt board

動きました。良かった良かった。

[編集者: すずき]
[更新: 2020年 9月 2日 19:55]

コメント一覧

  • コメントはありません。
open/close この記事にコメントする



2020年 9月 1日

link permalink

link 編集する

Zephyr OS で遊ぼう その 11 - Zephyr 2.3.0 に対応する

目次: Zephyr を調べる - まとめリンク

Zephyr 2.3.0 にバージョンアップしたところ、また Hoge ボードのビルドが通らなくなりました。

一点目は UART ドライバの CMakeLists です。zephyr_library_sources_if_kconfig() がなくなったため、書き方が変わりました。

CMakeLists の書き方が変わった Zephyr 本家のコミット

commit 244f826e3c7333bb92fb53a65c50ee5cbd8a2ea0
Author: Carles Cufi <carles.cufi@nordicsemi.no>
Date:   Fri Jul 31 13:52:40 2020 +0200

    cmake: remove _if_kconfig() functions

    This set of functions seem to be there just because of historical
    reasons, stemming from Kbuild. They are non-obvious and prone to errors,
    so remove them in favor of the `_ifdef()` ones with an explicit
    `CONFIG_` condition.

    Script used:

    git grep -l _if_kconfig | xargs sed -E -i
    "s/_if_kconfig\(\s*(\w*)/_ifdef(CONFIG_\U\1\E \1/g"

    Signed-off-by: Carles Cufi <carles.cufi@nordicsemi.no>
CMakeLists の書き方を変更

# drivers/serial/CMakeLists.txt

zephyr_library_sources_if_kconfig(uart_spike.c)

下記に変更

zephyr_library_sources_ifdef(CONFIG_UART_SPIKE uart_spike.c)

二点目は整数型です。Zephyr は u8_t, u16_t, u32_t のような独自の整数型を持っていましたが、C99 の型に置き換えられました。drivers/serial/uart_spike.c の実装を書き換える必要があります。

C99 の型に置き換えた Zephyr 本家のコミット
commit a1b77fd589dbe7284c17b029f251426a724abd47
Author: Kumar Gala <kumar.gala@linaro.org>
Date:   Wed May 27 11:26:57 2020 -0500

    zephyr: replace zephyr integer types with C99 types

            git grep -l 'u\(8\|16\|32\|64\)_t' | \
                    xargs sed -i "s/u\(8\|16\|32\|64\)_t/uint\1_t/g"
            git grep -l 's\(8\|16\|32\|64\)_t' | \
                    xargs sed -i "s/s\(8\|16\|32\|64\)_t/int\1_t/g"

    Signed-off-by: Kumar Gala <kumar.gala@linaro.org>

三点目は DT_INST_0_SPIKE_UART_SPIKE_LABEL マクロです。こいつは元々、訳のわからない名前で直しようがないので、SiFive のシリアルドライバの履歴を参考に直します。履歴を見ると 2回ほど変わっています。

マクロ名のルールは DT_INST_<INSTANCE>_<COMPAT>_<PROP> だったみたいです。今初めて知りました。やっぱりこの書き方は意味不明と思ったのか、DT_INST_PROP(0, label) という形式になりました。さらに今は DT_INST_LABEL(0) という形式に落ち着いています。

マクロ名の変更を行った Zephyr 本家のコミット
★★DT_INST_PROP(0, label) になったコミット

commit 8f84520130a346957ac2e2bdff1d6a51bca13af0
Author: Kumar Gala <kumar.gala@linaro.org>
Date:   Tue Mar 10 17:24:43 2020 -0500

    drivers: serial: uart_sifive: convert to new DT API

    Use the new devicetree.h API instead of the legacy macros.

    Signed-off-by: Kumar Gala <kumar.gala@linaro.org>


★★DT_INST_LABEL(0) になったコミット

commit 74d459fb66b10a5a0614a582fb0375d8b4a78c9e
Author: Kumar Gala <kumar.gala@linaro.org>
Date:   Thu Apr 2 13:13:47 2020 -0500

    drivers: serial: sifive: use DT_INST_LABEL macro

    Replace a few cases that should have been DT_INST_LABEL instead.

    Signed-off-by: Kumar Gala <kumar.gala@linaro.org>

このマクロの罠はそれだけに留まらず、ソースコードの先頭に下記マクロを定義する必要があります。依然として訳がわかりません。Zephyr は DviceTree 周りの仕様が不安定です。

ソースコードの先頭に必要なマクロ定義

// zephyr/drivers/serial/uart_spike.c

#define DT_DRV_COMPAT spike_uart_spike

最後はリンカーです。これは元々のコードのコンフィグが間違っていたことに起因します。ROM 領域がないのに CONFIG_XIP が有効になっていました。

リンクエラー
$ ninja

...

x-tools/riscv64-zephyr-elf/lib/gcc/riscv64-zephyr-elf/8.3.0/../../../../riscv64-zephyr-elf/bin/ld: invalid origin for memory region ROM
collect2: error: ld returned 1 exit status
ninja: build stopped: subcommand failed.

エラーメッセージからは何が原因か読み取れないですね。こういうときはビルドディレクトリのリンカースクリプト(zephyr/linker.cmd)をうまく行く場合と、うまく行かない場合で見比べます。

リンクエラーが起きないとき(qemu_riscv32)のリンカースクリプト

/* zephyr/build/zephyr/linker.cmd */

 OUTPUT_ARCH("riscv")
 OUTPUT_FORMAT("elf32-littleriscv")
MEMORY
{
    ROM (rx) : ORIGIN = 541065216, LENGTH = 12582912
    RAM (rwx) : ORIGIN = 0x80000000, LENGTH = ((16) << 10)
    IDT_LIST (wx) : ORIGIN = 0xFFFFF7FF, LENGTH = 2K
}
リンクエラーが起きるとき(Hoge ボード)のリンカースクリプト

/* zephyr/build/zephyr/linker.cmd */

 OUTPUT_ARCH("riscv")
 OUTPUT_FORMAT("elf32-littleriscv")
MEMORY
{
    ROM (rx) : ORIGIN = ROM_BASE, LENGTH = ROM_SIZE    /* ★★ここがおかしい★★ */
    RAM (rwx) : ORIGIN = 0x80000000, LENGTH = ((32) << 10)
    IDT_LIST (wx) : ORIGIN = 0xFFFFF7FF, LENGTH = 2K
}

このスクリプトは下記のファイルから生成されているようです。Hoge ボードは ROM 領域を使う前提ではないので、領域そのものが要りません。ROM 領域を葬るには CONFIG_XIP を n にすれば良さそうです。ファイルは boards/riscv/hoge/hoge_defconfig です。

RISC-V のリンカースクリプト

// include/arch/riscv/common/linker.ld

MEMORY
{
#ifdef CONFIG_XIP
#if DT_NODE_HAS_COMPAT_STATUS(DT_CHOSEN(zephyr_flash), soc_nv_flash, okay)
#define ROM_BASE DT_REG_ADDR(DT_CHOSEN(zephyr_flash))
#define ROM_SIZE DT_REG_SIZE(DT_CHOSEN(zephyr_flash))
#elif DT_NODE_HAS_COMPAT_STATUS(DT_CHOSEN(zephyr_flash), jedec_spi_nor, okay)
/* For jedec,spi-nor we expect the spi controller to memory map the flash
 * and for that mapping to be the second register property of the spi
 * controller.
 */
#define SPI_CTRL DT_PARENT(DT_CHOSEN(zephyr_flash))
#define ROM_BASE DT_REG_ADDR_BY_IDX(SPI_CTRL, 1)
#define ROM_SIZE DT_REG_SIZE_BY_IDX(SPI_CTRL, 1)
#endif
    ROM (rx)  : ORIGIN = ROM_BASE, LENGTH = ROM_SIZE    /* ★★ CONFIG_XIP が無効ならこの行ごと消える★★ */
#endif
    RAM (rwx) : ORIGIN = CONFIG_SRAM_BASE_ADDRESS, LENGTH = KB(CONFIG_SRAM_SIZE)
    /* Used by and documented in include/linker/intlist.ld */
    IDT_LIST  (wx)      : ORIGIN = 0xFFFFF7FF, LENGTH = 2K
}

以上の修正を入れて動かします。

動作確認

$ qemu-system-riscv32 -nographic -machine spike -net none -chardev stdio,id=con,mux=on -serial chardev:con -mon chardev=con,mode=readline -kernel zephyr/zephyr.elf -bios none

*** Booting Zephyr OS build zephyr-v2.3.0-2349-g0769bb760b2a  ***
Hello World! hoge

やっと動きました。良かった良かった。

[編集者: すずき]
[更新: 2020年 9月 2日 19:05]

コメント一覧

  • コメントはありません。
open/close この記事にコメントする



link もっと前
   2020年 9月 10日 -
      2020年 9月 1日  
link もっと後

管理用メニュー

link 記事を新規作成

合計:  counter total
本日:  counter today

link About www.katsuster.net
RDF ファイル RSS 1.0
QR コード QR コード

最終更新: 10/18 04:44

カレンダー

<2020>
<<<09>>>
--12345
6789101112
13141516171819
20212223242526
27282930---

最近のコメント 5件

  • link 20年09月10日
    すずき 「追加情報。最新の Debian Test...」
    (更新:10/07 16:48)
  • link 20年09月20日
    hdk 「最近は音楽聞く時やビデオ視聴時はミニコン...」
    (更新:09/24 21:43)
  • link 20年09月20日
    すずき 「ありゃー、同じ壊れ方ですね。\n新たなヘ...」
    (更新:09/24 00:23)
  • link 20年09月20日
    hdk 「うちのATH-AD300もやはり頭にプラ...」
    (更新:09/23 12:26)
  • link 20年07月10日
    すずき 「鳥のゲームは知りませんでした。色々やって...」
    (更新:08/11 18:59)

最近の記事 3件

link もっとみる
  • link 20年02月22日
    すずき 「[Zephyr を調べる - まとめリンク] 日記が増えすぎて、一...」
    (更新:10/18 04:44)
  • link 20年10月18日
    すずき 「[Zephyr OS で遊ぼう その 27 - SMP 対応、] ...」
    (更新:10/18 04:43)
  • link 20年10月17日
    すずき 「[Zephyr OS で遊ぼう その 26 - SMP 対応、] ...」
    (更新:10/18 03:24)

こんてんつ

open/close wiki
open/close Java API

過去の日記

open/close 2002年
open/close 2003年
open/close 2004年
open/close 2005年
open/close 2006年
open/close 2007年
open/close 2008年
open/close 2009年
open/close 2010年
open/close 2011年
open/close 2012年
open/close 2013年
open/close 2014年
open/close 2015年
open/close 2016年
open/close 2017年
open/close 2018年
open/close 2019年
open/close 2020年
open/close 過去日記について

その他の情報

open/close アクセス統計
open/close サーバ一覧
open/close サイトの情報